“生理心理学”课堂笔记(二)
抑制分为非条件抑制和条件抑制两大类。任一刺激强度过大,不但不会引起兴奋过程,相反会引起抑制,称为超限抑制。当机体进行某项活动,周围出现异常可怕的声音时,总会情不自禁地怔一下,停止正在进行的活动,这种现象就是外抑制。简言之,现时活动以外的新异刺激所引起的抑制过程就是外抑制。超限抑制和外抑制都是先天的非条件抑制过程;消退抑制、分化抑制、延缓抑制和条件抑制,都是条件抑制。
脑电图:大脑直流电背景上的自发交流电变化,经100万倍放大以后所得到的记录曲线。当人们闭目养神,内心十分平静时记录到的脑电图多以8-13次/秒的节律变化为主要成分,故将其称为基本节律或α波。如果这时突然受到刺激或内心激动起来,则脑电图的α波就会立即消失,为14-30次/秒的快波(β波)所取代。
细胞神经生理学利用微电极技术对细胞电活动进行记录,是细胞神经生理学的基本研究方法。资料表明,神经元的兴奋过程,伴随着其单位发放的神经脉冲频率加快;抑制过程为单位发放频率降低。无论频率加快还是减慢,每个脉冲的幅值不变。换言之,神经元对刺激强度是按着“全或无”的规律进行调频式或数字式编码。
“全或无”规则是指每个神经元都有一个刺激阈值,对阈值以下的刺激不发生反应;对阈值以上的刺激,不论其强弱均给出同样高度(幅值)的神经脉冲发放。
与上述规律相对应的是级量反应,突触后膜上的电位,无论是兴奋性突触后电位(EPSP),还是抑制性突触后电位、神经动作电位或细胞的单位发放后的后电位、感觉器官的感受器电位都是级量反应。在这类反应中,其电位的幅值随阈上刺激强度增大而变高,反应的频率并不发生变化,因为每个级量反应电位幅值缓慢增高后缓慢下降,这一过程可持续几十毫秒,且不能向周围迅速传导出去,只能局限在突触后膜不超过1平方微米的小点上,但其邻近的其他突触后膜也同时发生EPSP,则两个突触后膜上的EPSP却可以总和起来。电子显微镜研究表明,人脑的神经元是一个直径大约50微米的多型细胞,其胞体和树突上密密麻麻地分布着数千个突触,每个突触的后膜位点范围很小,但可以总和起来(空间总和与时间总和)。如果总和的EPSP超过这个神经元的单位发放阈值,就会导致这个神经元全部细胞膜去极化,出现整个细胞为一个单位而产生70-110毫伏的短脉冲,这就是快速的单位发放。可以迅速沿神经元的轴突传递到末梢的突触,经突触的化学传递环节,再引起下一个神经元的突触后电位。神经信息在脑内的传递过程,就是从一个神经元“全或无”的单位发放到下一个神经元突触后电位的级量反应总和后,再出现发放的过程,即“全或无”的变化和“级量反应”不断交替的过程。
物质基础:40多年前,细胞电生理学家根据这种过程发生在细胞膜上,就断定细胞膜对细胞内外带电离子的选择通透性,是膜电位形成的物质基础。在静息状态下,细胞膜外钠离子浓度较高,细胞膜内钾离子浓度较高,这类带电离子因膜内外的浓度差造成了膜内外大约负70-90毫伏电位差,称之为静息电位(极化现象)。当这个神经元受到刺激从静息状态变为兴奋状态时,细胞膜首先出现去极化过程,即膜内的负电位迅速消失的过程,然而这种过程往往超过零点,使膜内由负电位变为正电位,这个反转过程称为反极化或超射。所以,一个神经元单位发放的神经脉冲迅速上升部分,是由膜的去极化和反极化连续的变化过程。
分子神经生物学是近20-30年迅速发展起来的研究领域。
神经递质:凡是神经细胞间神经信息传递所中介的化学物质,神经递质大都是分子量较小的简单分子,包括胆碱类、单胺类、氨基酸类和多肽类等30多种物质。
神经调质并不直接传递神经信息,而是调节神经信息传递过程的效率和速率,其发生作用的距离比神经递质大,但其化学组成和结构可能与同类神经递质相同,也可能与神经递质完全不同。
突触后释放一种更小的分子,迅速逆向扩散到突触前膜,调节化学传递的过程,将这类小分子物质称为逆信使。已知的逆信使有腺苷和一氧化氮。
受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性受体结合反应,产生相应的生物效应。能与受体蛋白结合的物质,如神经递质、调质、激素和药物等,统称为受体的配基或配体。
感觉生理心理学
特异感觉系统和非特异感觉系统
各种特异感觉系统向大脑皮层的上行通路均发出许多侧支达脑干被盖部的网状结构,再由脑干网状结构发出网状上行和下行纤维,向大脑皮层广泛弥散性地投射,调节大脑皮层的兴奋性水平,也向感觉乃至运动系统弥散投射,以便对各种感受刺激均可给出适度的反映。许多特异的专一感觉系统和网状非特异投射系统,共同实现着对外部刺激或事物属性的感受功能。
在各种感觉系统中,不但存在着从外周向中枢和从低级中枢向高级中枢的传递过程;每一级中枢神经元之间还通过轴突侧支发生横向作用的侧抑制机制。此外,还存在着高级中枢对低级中枢,乃至对感官的下行性抑制影响,调节感觉系统的兴奋性水平。
感受阈值,即刚能引起主观感觉或细胞电活动变化的最小刺激强度。各种特异感觉系统 有自己的适宜刺激,对其感受阈值最低,即对其感受最灵敏。
随着刺激物长时间持续作用,感受灵敏率下降,感受阈值增高,这种现象称感受器的适应。
把有效地影响某一感觉细胞兴奋性的外周部位,称为该神经元的感受野。
眼的基本功能就是将外部世界千变万化的视觉刺激转换为视觉信息,这种基本功能的实现,依靠两种生理机制,即眼的折光成像机制和光感受机制。
折光成像的生理心理学机制
在眼球的结构中,角膜、房水、晶状体、玻璃体以及瞳孔都是它固有的眼内折光装置。为保证视网膜上清晰成像,瞳孔大小与晶状体曲率的变化起着重要作用。瞳孔的光反射、调节反射是实现折光成像这种功能的生理基础。
瞳孔反射也称光反射,在黑暗中瞳孔扩大,光照时瞳孔缩小的反应。
调节反射是一种较为复杂的反射活动,既包括不随意性自主神经反射活动,又包括眼外肌肉的随意性运动反应。视轴、晶体曲率和瞳孔同时变化的反射活动就是调节反射,是保证外界景物在视网膜上清晰成像的重要生理机制。
随意性眼动的方式及生理机制
眼睛的运动有许多方式,当我们观察位于视野一侧的景物又不允许头动时,两眼共同转向一侧。两眼视轴发生同方向性运动,称为共轭运动。正前方的物体从远处移向眼前时,为使其在视网膜上成像,两眼视轴均向鼻侧靠近,称为辐合。物体由眼前近处移向远处时,双眼视轴均向两颞侧分开,称为分散。辐合与分散的共同特点是两眼视轴总是反方向运动,称为辐辏运动。辐辏运动和共轭运动都是眼睛的随意运动。人们在观察客体时,有意识地使眼睛进行这些运动,以便使物像能最好地投射在视网膜上最灵敏的部位??中央窝上,得到最清楚的视觉。
注视及生理机制
在两次扫视之间,眼球不动,称注视,其持续时间约在150-400毫秒之间。注视期间,眼睛并非绝对不动;事实上此时眼睛发生快速微颤。微颤运动保证视网膜不断变换感受细胞对注视目标进行反映,从而克服了每个光感受细胞由于适应机制而引起的感受性降低。
光生物化学反应主要发生在视杆细胞之中,是产生明暗视觉信息的基础。颜色视觉的光生物化学基础在于视锥细胞内的视蛋白结构不同。
视网膜上有哪几种细胞?排列方式及电传导方式。
视网膜分为内、外两层。外层是色素上皮层,由色素细胞组成,由此产生和储存一些光化学物质。内层是由5种神经细胞组成的神经层,从外向内依次为视感受细胞(视杆细胞和视锥细胞)、水平细胞、双极细胞、无足细胞和神经节细胞。
细胞联系的一般规律是几个视感受细胞与1个双极细胞联系,几个双极细胞又与1个神经节细胞相关。因此,多个视感受细胞只引起1个神经节细胞兴奋,故视敏度较差;但在视网膜中央凹部只有视锥细胞,每个视锥细胞只与1个双极细胞相联系,而这个双极细胞又与1个神经节细胞相联系。因此,中央凹视敏度最高。由视感受细胞、双极细胞和神经节细胞形成神经信息传递的垂直联系;由水平细胞和无足细胞在垂直联系之间进行横向联系,1个神经节细胞及与其相互联系的全部其他视网膜细胞,构成视觉的最基本结构与功能单位,称之为视感受单位。
视网膜中央凹附近的视感受单位较小,而周边部分视网膜的感受单位较大。
除了神经节细胞之外,视网膜上的其他细胞对光刺激的反应均类似光感受细胞,根据光的相对强度变化给出级量反应,这种级量反应是缓慢的电变化,不能形成可传导的动作电位,但可与邻近细胞的慢变化发生时间和空间总和效应。水平细胞和无足细胞对视觉信息横向联系的作用正是以慢电位变化的总和效应为基础的。在视网膜上对光刺激的编码,只有神经节细胞才类似于脑内其他神经元,产生单位发放,对刺激强度按调频的方式给出神经编码。视网膜的横向联系中,水平细胞和无足细胞对信息的处理和从光感受细胞至双极细胞间的信息传递都是以级量反应为基础的模拟过程,只有神经节细胞的信息传递才是全或无的数字化过程。
视觉的传导通路:始于视网膜上的神经节细胞,其细胞轴突构成视神经,末梢止于外侧膝状体。来自两眼鼻侧的视神经左右交叉到对侧外侧膝状体;而来自两眼颞侧的视神经,不发生交叉投射到同侧外侧膝状体。外侧膝状体细胞发出的纤维经视放射投射至大脑皮层的初级视皮层(V1),继而与二级(V2)、三级(V3)和四级(V4)。等次级视皮层发生联系。V1区与简单视感觉有关,V2区与图形或客体的轮廓或运动感知有关,V4区主要与颜色觉有关。
视网膜神经节细胞的感受野呈现同心圆式,其中心区和周边区之间总是拮抗的。
外侧膝状体神经元的感受野与神经节细胞基本相似,形成中心区和周边区相互拮抗的同心圆式的感受野。
最新资讯
- 资深心理咨询师分享:心理从业者需要牢记的九大原则2024-12-20
- 心理咨询师学习内容:《基础知识》总览2024-12-18
- 资深心理咨询师分享:需要坚守的12条职业理念2024-12-16
- 资深心理咨询师分享:揭开心理咨询的五大常见误解2024-12-10
- 心理科普:心理咨询师有两个含义,你都了解吗?2024-12-07
- 心理科普:心理咨询师所承载的原型性使命是什么?2024-12-06
- 心理咨询师知识分享:如何与不同类型的人沟通2024-12-05
- 心理咨询师备考知识点分享:三大效应(附2025年心理咨询师考试安排)2024-12-03
- 心理咨询师备考知识点分享:人际心理学之沟通的技巧2024-12-02
- 心理咨询师的基本原则2024-11-26