通信与广电精讲讲义之光电缆特点及应用
更新时间:2009-10-19 15:27:29
来源:|0
浏览
收藏
一级建造师报名、考试、查分时间 免费短信提醒
1L411080 光(电)缆特点及应用
共三个考点:
掌握单模和多模光纤的特点和应用
熟光缆的分类、特点
熟悉通信电缆的分类、特点
1L411081 掌握单模和多模光纤的特点和应用 ( P14:光传输媒质;P58)
一、光纤结构和类型
二、光纤通信的工作窗口
三、光纤分类
四、多模光纤
五、单模光纤
一、光纤结构和类型
(一)光纤的结构
光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。
它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。)
纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。
包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。
1. 纤芯
位置: 位于光纤的中心部位,
直径:在4~50μm,单模光纤的纤芯直径为4~10μm ,多模光纤的纤芯直径为50μm。纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。
2. 包层
位置: 位于纤芯的周围
直径:125μm
成分:是含有极少量掺杂剂的高纯度二氧化硅。
掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。
3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。
一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料;
缓冲层:一般为性能良好的填充油膏;
二次涂覆层:一般多用聚丙烯或尼龙等高聚物。
涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。
(二)光纤的折射率分布
光纤的折射率分布有两种典型的情况:阶跃折射率光纤,渐变折射率光纤。
它们的共同特点:纤芯的折射率大于包层的折射率,这也是光信号在光纤中传输的必要条件。
(三)光在光纤中的传播
对于阶跃折射率光纤,由于纤芯和包层的折射率分布有明显的分界,光波在纤芯和包层界面的交界面形成全反射,并且形成锯齿形传输途径,引导光纤芯向前传播。
对于渐变折射率光纤,由于在其界面上折射率是连续变化的,轴中心的折射率最大,沿纤芯半径方向折射率按抛物线规律减小,在纤芯边缘的折射率最小,因此光波在纤芯中产生连续折射,形成穿过光纤轴线的类似于正弦波的光折射线,引导光波沿纤芯向前传播。
(四) 光纤最重要的两个传输特性 (P14)
损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。
(l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。
吸收损耗是因为光波在传输中有部分光能转化为热能;
散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。
当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。
(2)光纤传输色散:色散是光脉冲信号在光纤中传输,到达输出端时发生的时间上的展宽。
产生的原因是光脉冲信号的不同频率成分、不同模式,在传输时因速度不同,到达终点所用的时间不同而引起的波形畸变。
色散结果:这种畸变使得通信质量下降,从而限制了通信容量和传输距离。
二、光纤通信的工作窗口
光纤损耗系数随着波长而变化,为获得低损耗特性,光纤通信选用波长范围在800 ~1800nm,并称850nm(800~900nm)为短波长波段;1300~1600nm为长波长波段,主要有1310nm和1550nm两个窗口。实用的低损耗波长是:第一代系统,波长850nm,最低损耗2. 5dB/km,分贝(dB)采用石英多模光纤;第二代系统,波长1310nm,最低损耗0. 27dB/km,采用石英单模最低色散光纤;第三代系统,波长1550nm,最低损耗0.16dB/km,采用石英单模最低损耗与适应色散光纤。上述三个波长称为三个工作窗口。
三、光纤分类
四、多模光纤
当光纤的几何尺寸远大于光波波长时(约lμm),光纤传输的过程中会存在一着几十种乃至上百种传输模式,这样的光纤称为多模光纤。
由于不同的传播模式具有不同的传播速度与相位,因此,经过长距离传输会产生模式色散(经过长距离传输后,会产生时延差,导致光脉冲变宽)。模式色散会使多模光纤的带宽边窄,降低传输容量,因此,多模光纤只适用于低速率、短距离的光纤通信,目前数据通信局域网大量采用多模光纤。
五、单模光纤
当光纤的几何尺寸较小,与光波长在同一数量级,如芯径在4~10μm范围,光纤只允许一种模式(基模)在其中传播,其余的高次模全部截止,这样的光纤称为单模光纤。单模光纤避免了模式色散,适用于大容量长距离传输。
(一)单模光纤分类:
按电信标准化部门(ITU-T)建议分类可分为G.652, G.653, G.654, G.655四种单模光纤;按IEC标准分类可分为Bl.1、B1.2、Bl.3、B2、B4;按我国标准(GB/T)分类可分为Bl.l、B1.2、B1.3、B2、B4。我国标准对光纤类别型号的命名等采用了IEC规定,所以二者是一样的。
(二)几种单模光纤的特点和应用
l. G. 652标准单模光纤特点及应用
①零色散波长在1310nm附近。既可以使用在1310nm波长区域,也可以使用在1550nm波长区域。最佳工作波长在1310nm区域。
②当工作波长在1.3μm时,光纤色散很小,系统的传输距离只受光纤衰减所限制。
③光纤在1.3μm波段的损耗较大;在1.55μm波段的损耗较小。
④光纤截止波长:λ从<1250nm。
⑤模场直径:1310nm处的模场直径是8.6~9.5μm士0.7。在1550nm处没有具体规定,但一般不大于10. 3μm。
⑥衰减:衰减系数最大值在1310nm窗口,A级为0.36dB/krn, B级为0. 40dB/km,C级为0.50dB/km。
⑦色散:零色散波长范围是1300~1324nm。
⑧偏振模色散(PMD)系数最大值:0. 3ps/km。
2. G. 653色散位移光纤特点及应用
色散位移光纤在1.55μm色散为零,不利于多信道的WDM传输,用的信道数较多时,信道间距较小,这时就会发生四波混频(FWM)导致信道间发生串扰。如果光纤线路的色散为零,FWM(四波混频)的干扰就会十分严重;如有微量色散,FWN干扰反而还会减少。
①光纤截止波长:λc<1250nm.
②模场直径:1550nm处的模场直径是7. 8~ 8.5μm士0. 8 .
③衰减:衰减系数最大值在1310nm窗口,A级为0.40dB/km,B级为0.45dB/km,C级为0. 55dB/km
④偏振模色散(PMD)系数最大值:0. 3 ps/km .
此种光纤除了在日本等国家干线网上有应用外,在我国干线网上几乎没有应用
3. G.654截止波长位移光纤特点及应用
也叫衰减最小光纤(在1550nm处)。
①零色散波长在1310nm附近,截止波长位移到较长的波长,所以该光纤也被称为截止波长位移单模光纤。
②工作波长为1.55μm,在该波长附近上的衰减最小。
③零色散点在1300nm附近,但在1550nm窗口色散较大,约为17~20ps/ (nm• km)
④光纤截止波长:1350nm<λc<1600nm.
⑤模场直径:1550nm处的模场直径是9.5~10.5μm士0. 7 .。
⑥衰减:衰减系数最大值在1550 nm窗口,A级为0.19dB/km, B级为0. 22dB/km。
⑦色散:1550nm色散系数最大值20ps/nm•km; 1550nm零色散斜率最大值为0.07ps/(nm2•km)。
⑧偏振模色散(PMD)系数最大值:0. 3ps/km。
该种光纤主要应用于长距离数字传输系统。如海底缆。
4. G.655非零色散位移光纤特点及应用
①非零色散光纤实质上是一种改进的色散位移光纤,其零色散波长不在1. 55μm,而是在1. 525μm或1. 585μm处。
②在使用波长区域内具有非零的小色散值,削减了色散效应和四波混频效应。
③最佳使用波长范围在1530~1565nm区域,也可以一支持更高波长,直至16 (××不大于25)。
④光纤截止波长
⑤模场直径
⑥衰减
⑦C波段色散
⑧L波段色散
⑨偏振模色散(PMD)系数最大值
G. 655非零色散光纤适用于通信网和其他通信设备。既能用于新的陆上网络,又可对现有系统进行升级改造,它特别适用于DWDM系统的传输。
共三个考点:
掌握单模和多模光纤的特点和应用
熟光缆的分类、特点
熟悉通信电缆的分类、特点
1L411081 掌握单模和多模光纤的特点和应用 ( P14:光传输媒质;P58)
一、光纤结构和类型
二、光纤通信的工作窗口
三、光纤分类
四、多模光纤
五、单模光纤
一、光纤结构和类型
(一)光纤的结构
光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。
它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。)
纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。
包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。
1. 纤芯
位置: 位于光纤的中心部位,
直径:在4~50μm,单模光纤的纤芯直径为4~10μm ,多模光纤的纤芯直径为50μm。纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。
2. 包层
位置: 位于纤芯的周围
直径:125μm
成分:是含有极少量掺杂剂的高纯度二氧化硅。
掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。
3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。
一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料;
缓冲层:一般为性能良好的填充油膏;
二次涂覆层:一般多用聚丙烯或尼龙等高聚物。
涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。
(二)光纤的折射率分布
光纤的折射率分布有两种典型的情况:阶跃折射率光纤,渐变折射率光纤。
它们的共同特点:纤芯的折射率大于包层的折射率,这也是光信号在光纤中传输的必要条件。
(三)光在光纤中的传播
对于阶跃折射率光纤,由于纤芯和包层的折射率分布有明显的分界,光波在纤芯和包层界面的交界面形成全反射,并且形成锯齿形传输途径,引导光纤芯向前传播。
对于渐变折射率光纤,由于在其界面上折射率是连续变化的,轴中心的折射率最大,沿纤芯半径方向折射率按抛物线规律减小,在纤芯边缘的折射率最小,因此光波在纤芯中产生连续折射,形成穿过光纤轴线的类似于正弦波的光折射线,引导光波沿纤芯向前传播。
(四) 光纤最重要的两个传输特性 (P14)
损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。
(l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。
吸收损耗是因为光波在传输中有部分光能转化为热能;
散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。
当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。
(2)光纤传输色散:色散是光脉冲信号在光纤中传输,到达输出端时发生的时间上的展宽。
产生的原因是光脉冲信号的不同频率成分、不同模式,在传输时因速度不同,到达终点所用的时间不同而引起的波形畸变。
色散结果:这种畸变使得通信质量下降,从而限制了通信容量和传输距离。
二、光纤通信的工作窗口
光纤损耗系数随着波长而变化,为获得低损耗特性,光纤通信选用波长范围在800 ~1800nm,并称850nm(800~900nm)为短波长波段;1300~1600nm为长波长波段,主要有1310nm和1550nm两个窗口。实用的低损耗波长是:第一代系统,波长850nm,最低损耗2. 5dB/km,分贝(dB)采用石英多模光纤;第二代系统,波长1310nm,最低损耗0. 27dB/km,采用石英单模最低色散光纤;第三代系统,波长1550nm,最低损耗0.16dB/km,采用石英单模最低损耗与适应色散光纤。上述三个波长称为三个工作窗口。
三、光纤分类
四、多模光纤
当光纤的几何尺寸远大于光波波长时(约lμm),光纤传输的过程中会存在一着几十种乃至上百种传输模式,这样的光纤称为多模光纤。
由于不同的传播模式具有不同的传播速度与相位,因此,经过长距离传输会产生模式色散(经过长距离传输后,会产生时延差,导致光脉冲变宽)。模式色散会使多模光纤的带宽边窄,降低传输容量,因此,多模光纤只适用于低速率、短距离的光纤通信,目前数据通信局域网大量采用多模光纤。
五、单模光纤
当光纤的几何尺寸较小,与光波长在同一数量级,如芯径在4~10μm范围,光纤只允许一种模式(基模)在其中传播,其余的高次模全部截止,这样的光纤称为单模光纤。单模光纤避免了模式色散,适用于大容量长距离传输。
(一)单模光纤分类:
按电信标准化部门(ITU-T)建议分类可分为G.652, G.653, G.654, G.655四种单模光纤;按IEC标准分类可分为Bl.1、B1.2、Bl.3、B2、B4;按我国标准(GB/T)分类可分为Bl.l、B1.2、B1.3、B2、B4。我国标准对光纤类别型号的命名等采用了IEC规定,所以二者是一样的。
(二)几种单模光纤的特点和应用
l. G. 652标准单模光纤特点及应用
①零色散波长在1310nm附近。既可以使用在1310nm波长区域,也可以使用在1550nm波长区域。最佳工作波长在1310nm区域。
②当工作波长在1.3μm时,光纤色散很小,系统的传输距离只受光纤衰减所限制。
③光纤在1.3μm波段的损耗较大;在1.55μm波段的损耗较小。
④光纤截止波长:λ从<1250nm。
⑤模场直径:1310nm处的模场直径是8.6~9.5μm士0.7。在1550nm处没有具体规定,但一般不大于10. 3μm。
⑥衰减:衰减系数最大值在1310nm窗口,A级为0.36dB/krn, B级为0. 40dB/km,C级为0.50dB/km。
⑦色散:零色散波长范围是1300~1324nm。
⑧偏振模色散(PMD)系数最大值:0. 3ps/km。
2. G. 653色散位移光纤特点及应用
色散位移光纤在1.55μm色散为零,不利于多信道的WDM传输,用的信道数较多时,信道间距较小,这时就会发生四波混频(FWM)导致信道间发生串扰。如果光纤线路的色散为零,FWM(四波混频)的干扰就会十分严重;如有微量色散,FWN干扰反而还会减少。
①光纤截止波长:λc<1250nm.
②模场直径:1550nm处的模场直径是7. 8~ 8.5μm士0. 8 .
③衰减:衰减系数最大值在1310nm窗口,A级为0.40dB/km,B级为0.45dB/km,C级为0. 55dB/km
④偏振模色散(PMD)系数最大值:0. 3 ps/km .
此种光纤除了在日本等国家干线网上有应用外,在我国干线网上几乎没有应用
3. G.654截止波长位移光纤特点及应用
也叫衰减最小光纤(在1550nm处)。
①零色散波长在1310nm附近,截止波长位移到较长的波长,所以该光纤也被称为截止波长位移单模光纤。
②工作波长为1.55μm,在该波长附近上的衰减最小。
③零色散点在1300nm附近,但在1550nm窗口色散较大,约为17~20ps/ (nm• km)
④光纤截止波长:1350nm<λc<1600nm.
⑤模场直径:1550nm处的模场直径是9.5~10.5μm士0. 7 .。
⑥衰减:衰减系数最大值在1550 nm窗口,A级为0.19dB/km, B级为0. 22dB/km。
⑦色散:1550nm色散系数最大值20ps/nm•km; 1550nm零色散斜率最大值为0.07ps/(nm2•km)。
⑧偏振模色散(PMD)系数最大值:0. 3ps/km。
该种光纤主要应用于长距离数字传输系统。如海底缆。
4. G.655非零色散位移光纤特点及应用
①非零色散光纤实质上是一种改进的色散位移光纤,其零色散波长不在1. 55μm,而是在1. 525μm或1. 585μm处。
②在使用波长区域内具有非零的小色散值,削减了色散效应和四波混频效应。
③最佳使用波长范围在1530~1565nm区域,也可以一支持更高波长,直至16 (××不大于25)。
④光纤截止波长
⑤模场直径
⑥衰减
⑦C波段色散
⑧L波段色散
⑨偏振模色散(PMD)系数最大值
G. 655非零色散光纤适用于通信网和其他通信设备。既能用于新的陆上网络,又可对现有系统进行升级改造,它特别适用于DWDM系统的传输。
编辑推荐
上一篇:通信与广电精讲讲义之通信电源系统
最新资讯
- 2025年一级建造师新教材什么时候出来?变动大吗?2024-11-21
- 2025年一级建造师《建设工程经济》易混淆点:管理费用2024-11-21
- 2025年一级建造师《建设工程经济》易混淆点:收入分类2024-11-20
- 2025年一建工程经济易混淆点:资产、负债、所有者权益、收入、费用和利润2024-11-19
- 2025年一级建造师《建设工程经济》易混淆点:支出、费用2024-11-18
- 2025年一级建造师《建设工程经济》易混淆点:融资租赁、经营租赁2024-11-15
- 2025年一级建造师《建设工程经济》易混淆点:利息计算2024-11-14
- 2025年一建教材什么时候出?预计12月或1月2024-11-13
- 2025年一级建造师考试备考资料选购指南2024-11-11
- 2025年一级建造师备考指南:精选教材与高效学习方法2024-11-09